Mitochondrial potassium transport: the K(+) cycle.
نویسندگان
چکیده
Potassium transport plays three distinct roles in mitochondria. Volume homeostasis to prevent excess matrix swelling is a housekeeping function that is essential for maintaining the structural integrity of the organelle. This function is mediated by the K(+)/H(+) antiporter and was first proposed by Peter Mitchell. Volume homeostasis to prevent excess matrix contraction is a recently discovered function that maintains a fully expanded matrix when diffusive K(+) influx declines due to membrane depolarization caused by high rates of electron transport. Maintaining matrix volume under these conditions is important because matrix contraction inhibits electron transport and also perturbs the structure-function of the intermembrane space (IMS). This volume regulation is mediated by the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). Cell signaling functions to protect the cell from ischemia-reperfusion injury and also to trigger transcription of genes required for cell growth. This function depends on the ability of mitoK(ATP) opening to trigger increased mitochondrial production of reactive oxygen species (ROS). This review discusses the properties of the mitochondrial K(+) cycle that help to understand the basis of these diverse effects.
منابع مشابه
SLO-2 Is Cytoprotective and Contributes to Mitochondrial Potassium Transport
Mitochondrial potassium channels are important mediators of cell protection against stress. The mitochondrial large-conductance "big" K(+) channel (mBK) mediates the evolutionarily-conserved process of anesthetic preconditioning (APC), wherein exposure to volatile anesthetics initiates protection against ischemic injury. Despite the role of the mBK in cardioprotection, the molecular identity of...
متن کاملEnergy-driven aspartate efflux from heart and liver mitochondria.
The et&x of aspartate from rat heart and liver mitochondria is facilitated by energy derived from the electron transport chain or from adenosine triphosphate. The metabolic significance of this finding resides in the fact that aspartate efflux from mitochondria is required for operation of the malate-aspartate cycle, which is a major pathway for the energy-requiring transport of reducing equiva...
متن کاملتثبیت پتاسیم و ارتباط آن با خصوصیات فیزیکی، شیمیایی و کانیهای رسی خاکهای آهکی دشت کاکان، استان کهگیلویه و بویراحمد
Potassium fixation is one of the most important factors influencing the availability of this ion for plants. This research was carried out to evaluate the relationship between potassium (K) fixation with some physical and chemical characteristics of soils and clay minerals and to investigate the effect of the dry and wet cycle on potassium fixation in Kakan Plain, in Kohgilouye & Boyerahmad Pro...
متن کاملBiophysical properties of single potassium channel in the brain mitochondrial inner membrane of male rat with Alzheimer’s disease
Introduction: Alzheimer’s disease is a progressive neurodegenerative disorder, characterized by impairment of memory and changes in behavior and personality. Recent evidence suggests that mitochondrial channels play important roles in memory disorders. Accordingly, the biophysical properties of a single potassium channel were investigated in the brain mitochondrial inner membrane of rat with...
متن کاملMitochondrial transport of cations: channels, exchangers, and permeability transition.
This review provides a selective history of how studies of mitochondrial cation transport (K+, Na+, Ca2+) developed in relation to the major themes of research in bioenergetics. It then covers in some detail specific transport pathways for these cations, and it introduces and discusses open problems about their nature and physiological function, particularly in relation to volume regulation and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1606 1-3 شماره
صفحات -
تاریخ انتشار 2003